MRF Based Spatial Complexity for Hyperspectral Imagery Unmixing
نویسندگان
چکیده
Hyperspectral imagery (HSI) unmixing is a process that decomposes pixel spectra into a collection of constituent spectra (endmembers) and their correspondent abundance fractions. Without knowing any knowledge of HSI data, the unmixing problem is transformed into a blind source separation (BSS) problem. Several methods have been proposed to deal with the problem, like independent component analysis (ICA). In this paper, we introduce spatial complexity that applies Markov random field (MRF) to characterize the spatial correlation information of abundance fractions. Compared to previous BSS techniques for HSI unmixing, the major advantage of our approach is that it totally considers HSI spatial structure. Additionally, a proof is given that spatial complexity is suitable for HSI unmixing. Encouraging results have been obtained in terms of unmixing accuracy, suggesting the effectiveness of our approach.
منابع مشابه
Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملSemi-supervised Interactive Unmixing for Hyperspectral Image Analysis
In the past several decades, hyperspectral imaging has drawn a lot of attention in the field of remote sensing. Yet, due to low spatial resolutions of hyperspectral imagers, often the response from more than one surface material can be found in some hyperspectral pixels. These pixels are called mixed pixels. Mixed pixels bring challenges to traditional pixel-level applications, such as identifi...
متن کامل